
Un-locked Zig

Synchronizing Code

without Locks

Lukas Pietzschmann

October 25th, 2025

Motivation

• Have you ever cooked with others?
Caret-right It’s horrible!

• You need to coordinate who does what
and when

Caret-right Otherwise, you get in each other’s way

• Same problem in programming

Generated by Google’s Gemini

1 20

Concurrent Programming

fun Stack(comptime T: type) type {
 return struct {
 backing: std.ArrayList(T),

 pub fn push(self: *Stack, value: T) void {
 // try self.backing.append(value);
 const len = self.backing.items.len;
 self.backing.items.ptr[len] = value;
 self.backing.items.len = len + 1;
 }
 };
}

Hand-point-rightHand-point-right
Hand-point-rightHand-point-right
Hand-point-rightHand-point-right

2 20

Concurrent Programming

fun Stack(comptime T: type) type {
 return struct {
 backing: std.ArrayList(T),
 lock: std.Thread.Mutex,

 pub fn push(self: *Stack, value: T) void {
 // try self.backing.append(value);
 self.lock.lock();
 const len = self.backing.items.len;
 self.backing.items.ptr[len] = value;
 self.backing.items.len = len + 1;
 self.lock.unlock();
 }
 };
}

Hand-point-rightHand-point-right
Hand-point-rightHand-point-right
Hand-point-rightHand-point-right
Hand-point-rightHand-point-right
Hand-point-rightHand-point-right

3 20

Beyond Mutual Exclusion

• A Mutex is easy to understand and use
Caret-right Just grab it and you’re safe!

• But for more complex interactions, there are also more complex tools
• Semaphores
• Non-blocking Locks
• Read-Write Locks
• Reentrant Locks
• Phases/Barriers
• …

4 20

The hidden Costs of Locks

Locks seem simple and safe

• But can easily create
bottlenecks

• And add additional failure
modes

Caret-right Easy to stop thinking about
implications

What if we could achieve thread

safety without ever forcing a thread

to wait?

♥

• • • • • • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • • •• • • • • • • • • •

Lock-free

• Contention
Multiple threads try to acquire a

lock leads to performance

degradation.

• Starvation
When many threads compete for

a lock, some threads may never

get it.

• Priority Inversion

A lower-priority thread holds a

lock needed by a higher-priority

thread.

• Composability
Locks don’t compose well,

suggesting the addition of

coarser-grained ones.

A selection of additional failure modes

5 20

The hidden Costs of Locks

Locks seem simple and safe

• But can easily create
bottlenecks

• And add additional failure
modes

Caret-right Easy to stop thinking about
implications

What if we could achieve thread

safety without ever forcing a thread

to wait?

♥

• • • • • • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • • •• • • • • • • • • •

Lock-free

• Contention
Multiple threads try to acquire a

lock leads to performance

degradation.

• Starvation
When many threads compete for

a lock, some threads may never

get it.

• Priority Inversion

A lower-priority thread holds a

lock needed by a higher-priority

thread.

• Composability
Locks don’t compose well,

suggesting the addition of

coarser-grained ones.

A selection of additional failure modes

5 20

Agenda

What’s

up with

Locks?

Lock-free

Coding

Un-Locking

Zig

Generated by Google’s Gemini

6 20

How to synchronize without Locks?

The critical section should be so small that no other thread could interrupt it.

♥

Ato
mic O

perations

6 20

Our work horse: Compare and Swap (CAS)

fn cas(pointer: *T, expected: T, new: T) bool {
 if (pointer.* != expected) {
 return false;
 }
 pointer.* = new;
 return true;
}

“Look at this memory address. If it still contains the value I expected, then — and

only then — update it to my new value.”

7 20

Building upon CAS

• We can now utilize CAS to actually set a value atomically

var current_val: T = atomic_load(prt);
var new_val: T = compute(current_val);
while (!cas(ptr, current_val , new_val)) {
 current_val = atomic_load(ptr);
 new_val = compute(current_val);
}

• Often, this logic is wrapped into atomic variables
Caret-right They then provide atomic methods for getting, setting,
and updating the value

♥

O
p
ti
m
is
tic

Co
nc
urr

ency

8 20

Levels of Freedom

Obstruction Free

• Weekest Guarantee
• Thread will proceed

if all other threads

stop

Thread

Data

Other Threads
Suspended

Lock Free

• System-wide

progress

• At least one thread

makes progress

Thread

Data

Other Threads

Wait Free

• Strongest Guarantee

• Per-thread progress

Thread

Data

Other Threads

• Use locks or other blocking primitives

• A thread holding a lock can be suspended, blocking all

other threads indefinitely

Caret-right They don’t even provide obstruction freedom!

Blocking Algorithms

9 20

Levels of Freedom

Obstruction Free

• Weekest Guarantee
• Thread will proceed

if all other threads

stop

Thread

Data

Other Threads
Suspended

Lock Free

• System-wide

progress

• At least one thread

makes progress

Thread

Data

Other Threads

Wait Free

• Strongest Guarantee

• Per-thread progress

Thread

Data

Other Threads

• Use locks or other blocking primitives

• A thread holding a lock can be suspended, blocking all

other threads indefinitely

Caret-right They don’t even provide obstruction freedom!

Blocking Algorithms

9 20

Agenda

What’s

up with

Locks?

Lock-free

Coding

Un-Locking

Zig

Generated by Google’s Gemini

10 20

Un-Locking Zig — Atomic Operations

• Our CPUs support atomic operations withing their instruction sets
• test-and-set, fetch-and-increment, compare-and-swap, …
• LOCK XCHG, LOCK XADD, LOCK CMPXCHG, …

Caret-right Lock-free programming is enabled by the hardware itself

• Zig provides access to these atomic operations via built-in functions

fn cas(pointer: *T, expected: T, new: T) bool {
 if (pointer.* != expected) {
 return false;
 }
 pointer.* = new;
 return true;
}

@cmpxchgWeak(comptime T: type,
ptr: *T,
expected_value: T,
new_value: T,
success_order: AtomicOrder ,
fail_order: AtomicOrder

) ?T

@cmpxchgStrong(comptime T: type,
ptr: *T,
expected_value: T,
new_value: T,
success_order: AtomicOrder ,
fail_order: AtomicOrder

) ?T

10 20

Un-Locking Zig — Atomic Variables

• Zig provides atomic types in std.atomic
Caret-right std.atomic.Value

• It provides wrappers around Zig’s atomic built-ins

const std = @import("std");
const atomic = std.atomic;

var counter: atomic.Value(u32) = atomic.Value(u32).init(0);
counter.fetchAdd(1, .SeqCst);

var counter = 0;
@atomicRmw(u32, counter, .Add, 1, .SeqCst);

11 20

Un-Locking Zig — Atomic Variables

• Zig provides atomic types in std.atomic
Caret-right std.atomic.Value

• It provides wrappers around Zig’s atomic built-ins

const std = @import("std");
const atomic = std.atomic;

var counter: atomic.Value(u32) = atomic.Value(u32).init(0);
counter.fetchAdd(1, .SeqCst);
var counter = 0;
@atomicRmw(u32, counter, .Add, 1, .SeqCst);

11 20

Let’s look at some Code — Push

pub fn push(self: *Self, value: T) !void {
 var new_head = try self.allocator.create(Node);
 new_head.* = Node{
 .value = value,
 .next = null,
 };

 while (true) {
 const old_head = self.top.load(.acquire);
 new_head.next = old_head;
 if (self.top.cmpxchgWeak(old_head , new_head , .release, .

acquire) == null) {
 return;
 }
 }
}

Why is next not atomic?

12 20

Let’s look at some Code — Push

pub fn push(self: *Self, value: T) !void {
 var new_head = try self.allocator.create(Node);
 new_head.* = Node{
 .value = value,
 .next = null,
 };

 while (true) {
 const old_head = self.top.load(.acquire);
 new_head.next = old_head;
 if (self.top.cmpxchgWeak(old_head , new_head , .release, .

acquire) == null) {
 return;
 }
 }
}

Why is next not atomic?

12 20

Let’s look at some Code — Pop

pub fn pop(self: *Self) ?T {
 while (true) {
 const old_head = self.top.load(.acquire) orelse {
 return null;
 };
 const new_head = old_head.next;
 if (self.top.cmpxchgWeak(old_head , new_head , .release, .

acquire) == null) {
 const value = old_head.value;
 self.allocator.destroy(old_head);
 return value;
 }
 }
}

13 20

Why does CAS take so many parameters?

const data = 42;
const data_ready = true;

while (!data_ready) {}
use(data);

• This seems to work, right?
Caret-right Wrong! There is no clear dependency between data_ready and data
Caret-right The compiler and the CPU might reorder instructions :)

• By introducing memory barriers, we can prevent this reordering
Caret-right Since different operations have different requirements, we need to specify
them individually

14 20

Bringing Order to Chaos

Acquire

Memory Op

Atomic Op

Memory Op

Release

Memory Op

Atomic Op

Memory Op

AcqRel

Memory Op

Atomic Op

Memory Op

@cmpxchgWeak(comptime T: type,
ptr: *T,
expected_value: T,
new_value: T,
success_order: AtomicOrder ,
fail_order: AtomicOrder

) ?T

@cmpxchgStrong(comptime T: type,
ptr: *T,
expected_value: T,
new_value: T,
success_order: AtomicOrder ,
fail_order: AtomicOrder

) ?T

• The success order is enforced when the the actual and expected values match

• Fail order is enforced when they don’t

15 20

Bringing Order to Chaos

Acquire

Memory Op

Atomic Op

Memory Op

Release

Memory Op

Atomic Op

Memory Op

AcqRel

Memory Op

Atomic Op

Memory Op

@cmpxchgWeak(comptime T: type,
ptr: *T,
expected_value: T,
new_value: T,
success_order: AtomicOrder ,
fail_order: AtomicOrder

) ?T

@cmpxchgStrong(comptime T: type,
ptr: *T,
expected_value: T,
new_value: T,
success_order: AtomicOrder ,
fail_order: AtomicOrder

) ?T

• The success order is enforced when the the actual and expected values match

• Fail order is enforced when they don’t

15 20

The Problem with ABBA ABA

Generated by Google’s Gemini Generated by Google’s Gemini Generated by Google’s Gemini

16 20

The Solution to ABBA ABA

Lightbulb DCAS

Double CAS; not supported

on most hardware.

cas(ptr, ep, ap,
ver, ev, av);

Not to be confused with a

wide CAS!

Lightbulb Pointer Tagging

Only delay the problem,

but can be practical.

On 8-byte aligned

systems, 3 bits are free!

We can just put the

version there.

Then we don’t need DCAS!

Lightbulb Hazard Pointers

Safe memory reclamation,

but complex to implement.

Don’t modify the CAS;

prevent the “A back to A”

part.

Pretty much manual

garbage collection.

17 20

Agenda

What’s

up with

Locks?

Lock-free

Coding

Un-Locking

Zig

Generated by Google’s Gemini

18 20

When Locks are good enough

Simplicity

• When performance is not
critical

• When few threads access a

resource a few times

Coordination

• When threads need to wait
for each other

• When complex interactions
are needed

♥

WohooLocks

18 20

When Lock-Free shines

Performance

• Better performance under
oversubscription

• Better suited for real-time
and low-latency systems

Robustness

• No unpredictable blocking
delays

• No deadlocks, livelocks, or
priority inversions

19 20

Conclusion

Check Locks have real — often hidden — costs

Check Non-blocking algorithms utilize atomic operations to achieve thread safety

Check A CAS inside a loop is the building block of many algorithms

Check While non-blocking algorithms have actual advantages, they also come with

their own challenges

Don’t be afraid to use locks, but don’t limit yourself to them either!

20 20

Lukas Pietzschmann

Zigtoberfest, October 25th, 2025 lukas@pietzschmann.org

1

Questions?

