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Motivation

• Have you ever cooked with others?
Caret-right It’s horrible!

• You need to coordinate who does what
and when

Caret-right Otherwise, you get in each other’s way

• Same problem in programming
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Concurrent Programming

fun Stack(comptime T: type) type {
 return struct {
  backing: std.ArrayList(T),

  pub fn push(self: *Stack, value: T) void {
   // try self.backing.append(value);
   const len = self.backing.items.len;
   self.backing.items.ptr[len] = value;
   self.backing.items.len = len + 1;
  }
 };
}

Hand-point-rightHand-point-right
Hand-point-rightHand-point-right
Hand-point-rightHand-point-right
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Concurrent Programming

fun Stack(comptime T: type) type {
 return struct {
  backing: std.ArrayList(T),
  lock: std.Thread.Mutex,

  pub fn push(self: *Stack, value: T) void {
   // try self.backing.append(value);
   self.lock.lock();
   const len = self.backing.items.len;
   self.backing.items.ptr[len] = value;
   self.backing.items.len = len + 1;
   self.lock.unlock();
  }
 };
}
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Beyond Mutual Exclusion

• A Mutex is easy to understand and use
Caret-right Just grab it and you’re safe!

• But for more complex interactions, there are also more complex tools
• Semaphores
• Non-blocking Locks
• Read-Write Locks
• Reentrant Locks
• Phases/Barriers
• …
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The hidden Costs of Locks

Locks seem simple and safe

• But can easily create
bottlenecks

• And add additional failure
modes

Caret-right Easy to stop thinking about
implications

What if we could achieve thread

safety without ever forcing a thread

to wait?

♥

• • • • • • • • • • • • •• • • • • • • • • • • •• • • • • • • • • • • • •• • • • • • • • • •

Lock-free

• Contention
Multiple threads try to acquire a

lock leads to performance

degradation.

• Starvation
When many threads compete for

a lock, some threads may never

get it.

• Priority Inversion

A lower-priority thread holds a

lock needed by a higher-priority

thread.

• Composability
Locks don’t compose well,

suggesting the addition of

coarser-grained ones.

A selection of additional failure modes
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How to synchronize without Locks?

The critical section should be so small that no other thread could interrupt it.

♥

Ato
mic O

perations
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Our work horse: Compare and Swap (CAS)

fn cas(pointer: *T, expected: T, new: T) bool {
 if (pointer.* != expected) {
  return false;
 }
 pointer.* = new;
 return true;
}

“Look at this memory address. If it still contains the value I expected, then — and

only then — update it to my new value.”
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Building upon CAS

• We can now utilize CAS to actually set a value atomically

var current_val: T = atomic_load(prt);
var new_val: T = compute(current_val);
while (!cas(ptr, current_val , new_val)) {
 current_val = atomic_load(ptr);
 new_val = compute(current_val);
}

• Often, this logic is wrapped into atomic variables
Caret-right They then provide atomic methods for getting, setting,
and updating the value

♥
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Levels of Freedom

Obstruction Free

• Weekest Guarantee
• Thread will proceed

if all other threads

stop

Thread

Data

Other Threads
Suspended

Lock Free

• System-wide

progress

• At least one thread

makes progress

Thread

Data

Other Threads

Wait Free

• Strongest Guarantee

• Per-thread progress

Thread

Data

Other Threads

• Use locks or other blocking primitives

• A thread holding a lock can be suspended, blocking all

other threads indefinitely

Caret-right They don’t even provide obstruction freedom!

Blocking Algorithms
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Un-Locking Zig — Atomic Operations

• Our CPUs support atomic operations withing their instruction sets
• test-and-set, fetch-and-increment, compare-and-swap, …
• LOCK XCHG, LOCK XADD, LOCK CMPXCHG, …

Caret-right Lock-free programming is enabled by the hardware itself

• Zig provides access to these atomic operations via built-in functions

fn cas(pointer: *T, expected: T, new: T) bool {
 if (pointer.* != expected) {
  return false;
 }
 pointer.* = new;
 return true;
}

@cmpxchgWeak(comptime T: type,
ptr: *T,
expected_value: T,
new_value: T,
success_order: AtomicOrder ,
fail_order: AtomicOrder

) ?T

@cmpxchgStrong(comptime T: type,
ptr: *T,
expected_value: T,
new_value: T,
success_order: AtomicOrder ,
fail_order: AtomicOrder

) ?T
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Un-Locking Zig — Atomic Variables

• Zig provides atomic types in std.atomic
Caret-right std.atomic.Value

• It provides wrappers around Zig’s atomic built-ins

const std = @import("std");
const atomic = std.atomic;

var counter: atomic.Value(u32) = atomic.Value(u32).init(0);
counter.fetchAdd(1, .SeqCst);

var counter = 0;
@atomicRmw(u32, counter, .Add, 1, .SeqCst);
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Let’s look at some Code — Push

pub fn push(self: *Self, value: T) !void {
 var new_head = try self.allocator.create(Node);
 new_head.* = Node{
  .value = value,
  .next = null,
 };

 while (true) {
  const old_head = self.top.load(.acquire);
  new_head.next = old_head;
  if (self.top.cmpxchgWeak(old_head , new_head , .release, .

acquire) == null) {
   return;
  }
 }
}

Why is next not atomic?
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Let’s look at some Code — Pop

pub fn pop(self: *Self) ?T {
 while (true) {
  const old_head = self.top.load(.acquire) orelse {
    return null;
  };
  const new_head = old_head.next;
  if (self.top.cmpxchgWeak(old_head , new_head , .release, .

acquire) == null) {
   const value = old_head.value;
   self.allocator.destroy(old_head);
   return value;
  }
 }
}
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Why does CAS take so many parameters?

const data = 42;
const data_ready = true;

while (!data_ready) {}
use(data);

• This seems to work, right?
Caret-right Wrong! There is no clear dependency between data_ready and data
Caret-right The compiler and the CPU might reorder instructions :)

• By introducing memory barriers, we can prevent this reordering
Caret-right Since different operations have different requirements, we need to specify
them individually
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Bringing Order to Chaos

Acquire

Memory Op

Atomic Op

Memory Op

Release

Memory Op

Atomic Op

Memory Op

AcqRel

Memory Op

Atomic Op

Memory Op

@cmpxchgWeak(comptime T: type,
ptr: *T,
expected_value: T,
new_value: T,
success_order: AtomicOrder ,
fail_order: AtomicOrder

) ?T

@cmpxchgStrong(comptime T: type,
ptr: *T,
expected_value: T,
new_value: T,
success_order: AtomicOrder ,
fail_order: AtomicOrder

) ?T

• The success order is enforced when the the actual and expected values match

• Fail order is enforced when they don’t
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The Problem with ABBA ABA
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The Solution to ABBA ABA

Lightbulb DCAS

Double CAS; not supported

on most hardware.

cas(ptr, ep, ap,
ver, ev, av);

Not to be confused with a

wide CAS!

Lightbulb Pointer Tagging

Only delay the problem,

but can be practical.

On 8-byte aligned

systems, 3 bits are free!

We can just put the

version there.

Then we don’t need DCAS!

Lightbulb Hazard Pointers

Safe memory reclamation,

but complex to implement.

Don’t modify the CAS;

prevent the “A back to A”

part.

Pretty much manual

garbage collection.
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When Locks are good enough

Simplicity

• When performance is not
critical

• When few threads access a

resource a few times

Coordination

• When threads need to wait
for each other

• When complex interactions
are needed

♥

WohooLocks
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When Lock-Free shines

Performance

• Better performance under
oversubscription

• Better suited for real-time
and low-latency systems

Robustness

• No unpredictable blocking
delays

• No deadlocks, livelocks, or
priority inversions
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Conclusion

Check Locks have real — often hidden — costs

Check Non-blocking algorithms utilize atomic operations to achieve thread safety

Check A CAS inside a loop is the building block of many algorithms

Check While non-blocking algorithms have actual advantages, they also come with

their own challenges

Don’t be afraid to use locks, but don’t limit yourself to them either!
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