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Motivation

Have you ever cooked with others?
It’s horrible!

You need to coordinate who does what
and when

Otherwise, you get in each other’s way

Same problem in programming
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Concurrent Programming

fun Stack(comptime T: type) type {
return struct {
backing: std.ArrayList(T),

pub fn push(self: *Stack, value: T) void {
// try self.backing.append (value);
const len = self.backing.items.len;
self .backing.items.ptr[len] = value;
self .backing.items.len = len + 1;

+

+s
}
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Concurrent Programming

fun Stack(comptime T: type) type {
return struct {
backing: std.ArrayList(T),
lock: std.Thread.Mutex,

pub fn push(self: *Stack, value: T) void {
// try self.backing.append(value);
self.lock.lock();
const len = self.backing.items.len;
self.backing.items.ptr[len] = value;
self .backing.items.len = len + 1;
self.lock.unlock();



Beyond Mutual Exclusion

A Mutex is easy to understand and use
Just grab it and you’re safe!

But for more complex interactions, there are also more complex tools

Semaphores
Non-blocking Locks
Read-Write Locks
Reentrant Locks
Phases/Barriers
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The hidden Costs of Locks

But can easily create
bottlenecks

And add additional failure
modes

Easy to stop thinking about
implications

What if we could achieve thread
safety without ever forcing a thread
to wait?
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e Contention
Multiple threads try to acquire a
lock leads to performance
degradation.

e Starvation
When many threads compete for
a lock, some threads may never
get it.

A selection of additional failure modes

e Priority Inversion
A lower-priority thread holds a
lock needed by a higher-priority
thread.

e Composability
Locks don’t compose well,
suggesting the addition of
coarser—-grained ones.
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How to synchronize without Locks?

‘The critical section should be so small that no other thread could interrupt it. \
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Our work horse: Compare and Swap (CAS)

fn cas(pointer: *T, expected: T, new: T) bool {
if (pointer.* != expected) {
return false;

b
pointer.* = new;
return true;

“Look at this memory address. If it still contains the value | expected, then — and
only then — update it to my new value.”
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Building upon CAS

We can now utilize CAS to actually set a value atomically

var current_val: T = atomic_load(prt);
var new_val: T = compute(current_val);
while (!cas(ptr, current_val, new_val)) {
current_val = atomic_load(ptr);
new_val = compute(current_val);

}

Often, this logic is wrapped into atomic variables

They then provide atomic methods for getting, setting,
and updating the value




Levels of Freedom

Weekest Guarantee

Thread will proceed
if all other threads

System-wide
progress

Strongest Guarantee

At least one thread

stop makes progress Per-thread progress
Thread Thread Thread
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Blocking Algorithms

e Use locks or other blocking primitives
e A thread holding a lock can be suspended, blocking all

other threads indefinitely
» They don’t even provide obstruction freedom!
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Un-Locking Zig — Atomic Operations

Our CPUs support atomic operations withing their instruction sets

test-and-set, fetch-and-increment, compare-and-swap, ...
LOCK XCHG, LOCK XADD, LOCK CMPXCHG,

Lock-free programming is enabled by the hardware itself

2ig provides access to these atomic operations via built-in functions

@cmpxchgWeak (comptime T: type, QcmpxchgStrong(comptime T: type,

ptr: *T, ptr: *T,

expected_value: T, expected_value: T,
new_value: T, new_value: T,
success_order: AtomicOrder, success_order: AtomicOrder,
fail_order: AtomicOrder fail_order: AtomicOrder

) 7T ) 7T
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Un-Locking Zig — Atomic Variables

2ig provides atomic types in std.atomic

std.atomic.Value

It provides wrappers around Zig’s atomic built-ins
const std = @import("std");
const atomic = std.atomic;

var counter: atomic.Value(u32) = atomic.Value(u32).init(0);
counter.fetchAdd (1, .SeqCst);
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Un-Locking Zig — Atomic Variables

2ig provides atomic types in std.atomic

std.atomic.Value

It provides wrappers around Zig’s atomic built-ins

var counter = 0;
@atomicRmw(u32, counter, .Add, 1, .SeqCst);
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Let’s look at some Code — Push

pub fn push(self: *Self, value: T) !void {
var new_head = try self.allocator.create(Node);
new_head.* = Node{
.value = value,
.next = null,

};

while (true) {
const old_head = self.top.load(.acquire);
new_head.next = old_head;
if (self.top.cmpxctheak(old_head, new_head, .release, .<&
acquire) == null) A
return;
}

}
}



Let’s look at some Code — Push

Why is next not atomic?
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Let’s look at some Code — Pop

pub fn pop(self: *Self) 7T {
while (true) {
const old_head = self.top.load(.acquire) orelse {
return null;
}s

const new_head = old_head.next;

if (self.top.cmpxchgWeak(old_head, new_head, .release,

acquire) == null) {
const value = old_head.value;
self.allocator.destroy(old_head) ;
return value;

}

}
}

S
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Why does CAS take so many parameters?

const data = 42; while (!data_ready) {}
const data_ready = true; use (data) ;

This seems to work, right?
Wrong! There is no clear dependency between data_ready and data
The compiler and the CPU might reorder instructions ;)

By introducing memory barriers, we can prevent this reordering

Since different operations have different requirements, we need to specify
them individually
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Bringing Order to Chaos

Acquire Release AcqRel
Memory Op Memory Op Memory Op
[ k Atomic Op \ ] ! o i
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QcmpxchgWeak (comptime T: type, @cmpxchgStrong (comptime T: type,
ptr: *T, ptr: *T,
expected_value: T, expected_value: T,
new_value: T, new_value: T,
success_order: AtomicOrder, success_order: AtomicOrder,
fail_order: AtomicOrder fail_order: AtomicOrder

) 7T ) 7T

* The success order is enforced when the the actual and expected values match
* Fail order is enforced when they don’t
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The Problem with AB8#& ABA
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The Solution to ABB& ABA

Q DCAS

Double CAS; not supported
on most hardware.

cas(ptr, ep, ap,
ver, ev, av);

Not to be confused with a
wide CAS!

Q Pointer Tagging

Only delay the problem,
but can be practical.

On 8-byte aligned
systems, 3 bits are free!
We can just put the
version there.

Then we don’t need DCAS!

Q Hazard Pointers

Safe memory reclamation,
but complex to implement.

Don’t modify the CAS;
prevent the “A back to R”
part.

Pretty much manual
garbage collection.
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When Locks are good enough

When performance is not
critical

When few threads access a
resource a few times

$4207 oouoth

When threads need to wait
for each other

When complex interactions
are needed
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When Lock-Free shines
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Better performance under
oversubscription

Better suited for real-time
and low-latency systems

No unpredictable blocking
delays

No deadlocks, livelocks, or
priority inversions
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Conclusion
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Locks have real — often hidden — costs
Non-blocking algorithms utilize atomic operations to achieve thread safety
A CAS inside a loop is the building block of many algorithms

While non-blocking algorithms have actual advantages, they also come with
their own challenges

| Don’t be afraid to use locks, but don’t limit yourself to them either! I
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