
Apache Spark – An Application of In-Memory
Processing

Lukas Pietzschmann
lukas.pietzschmann@uni-ulm.de

ABSTRACT
This report covers how the main concepts and inner
workings of Apache Spark work together in order to
provide a performant, scalable and fault-tolerant dis-
tributed computing platform. It will also be shown
how in memory processing influenced not only Spark’s
design, but also the way a user interfaces with the
system.

1 INTRODUCTION
Apache Spark was initially designed to overcome the
limitations of the classical MapReduce approach origi-
nally proposed in MapReduce: simplified data process-
ing on large clusters (Dean and Ghemawat). To be
able to adapt to a wider range of applications and
improve the general performance by caching intermedi-
ate results, Spark implements the concept of resilient
distributed datasets (RDDs).

A RDD models a read only collection of records
that can easily be distributed across a cluster of nodes.
Users can run parallel MapReduce-like operations on
RDDs with Spark assuring correctness even in the case
of a failing node. Note that the content of an RDD
is in general not persisted on hard drives but only
cached in RAM which can lead to great performance
improvements.

Fault tolerance can be ensured by the notion of
lineage. Each RDD stores exactly how it evolved over
time so that it can restore its current state at any
point. This concept, however, does not only apply to
entire datasets. Even individual partitions can be easily
recomputed with a RDD‘s lineage.

While MapReduce is only aware of two operations –
namely map and reduce – Spark can perform a greater
variety of actions and transformations. As said, we
distinguish between two categories of operations:
Transformations A transformation applies a specific

function to every element of the given RDD to
produce a completely new dataset.

DCP, WT 2022/23, Institute of Distributed Systems, Ulm
University
© CC-BY-SA This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License. https://creati
vecommons.org/licenses/by-sa/4.0/

Action An action, on the other hand, does not pro-
duce a new dataset, but will narrow its source
RDD down to a single result.

The sequential application of transformations will not
lead to an actual computation. Instead, Spark will wait
until an action forces the execution of the generated
lineage graph.

The following sections will go into greater detail
on how the aforementioned components and concepts
interact in order to create a performant, scalable and
fault-tolerant distributed computing platform.

2 IN-MEMORY PROCESSING
In-memory processing can enable great performance
improvements. In A comprehensive performance anal-
ysis of Apache Hadoop and Apache Spark for large
scale data sets using HiBench Nasim Ahmed shows the
performance differences between Spark’s in-memory
processing and Apache Hadoop.

Figure 1: The comparison of Hadoop and Spark
with Word-Count workload with varied input
splits and shuffle tasks [2]

Figure 1 shows how the performance of both sys-
tems diverges as soon as the data load increases. The
main reason Spark can achieve such a high throughput
of data is its ability to cache intermediate result in
memory.

How this concept influenced the design of the whole
system will be discussed in the following section.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


DCP, WT 2022/23, Institute of Distributed Systems, Ulm University Lukas Pietzschmann

3 DATA MODEL
Spark provides three different abstractions to let a
user interface with the system: Resilient distributed
datasets and two types of shared variables [3, P. 2].
Most of Sparks code and it’s abstractions are imple-
mented in scala, but can also be accessed in languages
like Python, Java or R through bindings. All examples
in this report are written in Python.

3.1 Resilient distributed datasets
A RDD is a collection of immutable records that can
easily be distributed over a cluster of nodes. Spark’s
core provides four ways to create a new RDD: (1) from
file backed storage, (2) by parallelizing a Scala collec-
tion1, (3) by transforming an existing RDD, or (4) by
changing a RDD’s persistence [3, P. 2]. Through addi-
tional abstractions, Spark also allows for the creation
of RDDs from e.g. SQL tables or graphs (see section
6.1 and 6.2).

1 rdd: RDD = sc.textFile("some_text.txt")

Listing 1: RDD creation

Listing 1 shows how one can create a RDD from a file.
Spark will then separate the given list into n partitions,
with n typically being the number of nodes in the
cluster. To be able to control the number of partitions
directly, an RDD can also be explicitly repartitioned.

The RDD type enables access to a whole class of
different actions and transformations. The following
table shows some of the most common operations:

Type Name

Transformation

map, flatMap, filter, reduceByKey
union, intersection, distinct
groupBy, join, fullOuterJoin
sortBy, keys, values

Actions

reduce, fold, aggregate
first, take, collect
min, max, mean
count, countByKey, countByValue

Table 1: Common transformations and actions
on RDDs

Note that not all operations shown in Table 1 are
implemented in Spark’s core. Especially ByKey Opera-
tions are provided by Spark’s SQL library (see section
6.1).

As each transformation returns a new RDD one can
easily chain multiple transformations together.
1Apache Spark is mostly written in Scala, but there are bindings
for other languages, too.

2 from operator import add
3 rdd2 = rdd.flatMap(lambda l: l.split(" ")) \
4 .map(lambda w: (w, 1)) \
5 .reduceByKey(add)

Listing 2: Transformation chaining

The example shown in listing 2 implements the main
part of the “Hello World” of distributed systems: Word-
Count. Instead of triggering an actual computation,
Spark will keep track of rdd2’s lineage by generating
a directed acyclic graph (DAG). Listing 2’s transfor-
mation pipeline will – at least in theory – genrate the
following DAG:

textFile flatMap map reducebyKey
rdd rdd2

Figure 2: Representation of a lineage graph

The DAG should be read like a dependency graph.
If rdd2 has to be computed, Spark will follow all ver-
tices until it arrives at the root node (In this case:
textFile). Spark will then backtrack and compute all
the remaining nodes on its way up.

To actually trigger a computation, an action has to
be used.

6 result = rdd2.collect()

Listing 3: Forcing a computation

Spark will now heavily optimize the graph shown
in figure 2 in order to minimize the number of trans-
formations that have to be performed. In this simple
example, the optimizer will likely combine all transfor-
mations needed to compute rdd2. We call this a logical
plan [4, P. 3].

3.2 Shared Variables
Besides RDDs, there is another way to store data:
Shared variables. In general, Spark will package a
closure for every operation, containing every piece of
local data that is necessary for the specific operation
and the operation itself. Local data meaning everything
that is accessed besides the RDD (e.g. local variables
or other user defined functions). This closure is then
sent along with every task (see section 4.3). Shared
variables allow the user to optimize this behavior for
two specific use cases.

2



Lukas Pietzschmann Apache Spark – An Application of In-Memory Processing

Broadcast variables Broadcast variables are designed
to improve the performance of large read only
datasets. Instead of being copied with every clo-
sure, a broadcast variable will only be distributed
once and is then accessible in an immutable man-
ner [5].

Accumulators Accumulators are – as the name im-
plies – used to accumulate data. It should be
noted that they are restricted in the sense that
only commutative and associative operations can
be applied to them. This is due to Spark’s inabil-
ity to guarantee the order of execution and the
requirement for accumulators to be determinis-
tic. On the other hand, Spark tries to guarantee
exactly-once semantics. This, unfortunately, falls
apart as soon as accumulators are used inside
transformations that have to be recalculated [6].

3.3 Fault tolerance
Fault tolerance is a key aspect for ensuring the reliabil-
ity of a distributed system. As previously said, Spark’s
operations are deterministic in the sense that they
will compute the same result even if executed multiple
times2. Additionally, Spark is able to recompute whole
RDDs or even single partitions with its notion of a
lineage graph [3, P. 1].

This allows for easy recomputation of a node’s calcu-
lations in case of a failure. Because of this determinism
and lineage, Spark can even redistribute a slow node’s
workload to other nodes to ensure efficient processing.

3.4 Persistence
By default, Spark discards data from memory as soon
as it was used. Another usage at a later point in time
will require a recomputation of the entire dataset. In
order to prevent this behavior, a user can persist a
RDD in either RAM or on the disk. Persisting data
won’t alter its laziness, meaning that the RDD’s lineage
graph is not evaluated at the time of persisting. Spark
will wait until an action forces evaluation and will then
persist everything [3, P. 2].

Note that in memory caching is only a hint. If there’s
not enough RAM accessible, Spark will fall back to
recomputing the RDD’s content on every usage. This
is mainly done to keep the system going even in tight
situations [3, P. 2].

In his 2010 paper Spark: Cluster Computing with
Working Sets Matei Zaharia wrote:

We also plan to extend Spark to support
other levels of persistence (e.g., in-memory
replication across multiple nodes).

2If user provided code involves randomness, this claim cannot
hold.

Between this publication and today (Feb. 2023) this
was actually implemented. Spark’s persistence infras-
tructure supports the replication of datasets on two
nodes. This can immensely help to avoid costly recom-
putation in case of a failure.

4 ARCHITECTURE
This chapter will delve into the internal architecture
of Apache Spark, exploring the components that make
up the system and how they work together. The fol-
lowing figure shows how the different components are
connected. The subsequent subsections will go into
greater detail on every important component.

Context

Driver Cluster
Manager

Task Task

Executor

Worker Node

Figure 3: Apache Spark’s Architecture

4.1 Driver and Context
The driver is the governing node in a cluster. It acts as
the coordinator of the application and does not execute
any operations3. The driver node is also responsible to
instantiate a context, which will then run in its address
space.

This context is the main entry point into Spark’s
API. It is accessible in code through a variable called
sc (see listing 1). Its responsibilities include defining
the application’s logic, scheduling tasks, persisting
RDDs, creating closures, keeping track of all lineage
graphs, and communicating with the cluster manager
to execute the application [5].

To make horizontal scaling trivial, the driver – and
context – need to be reachable over the network in
order to be able to accept new worker nodes on the
fly.

4.2 Cluster Manager
The cluster manager is responsible for allocating re-
sources, such as CPU and memory. Spark supports four
different cluster managers: (1) its own standalone clus-
ter manager, (2) Apache Mesos, (3) Apache YARN and
(4) Kubernetes [5, Cluster Mode Overview]. While be-
ing extremely easy to set up, Spark’s standalone cluster
manager unfortunately has the severe disadvantage of
not supporting a distributed file system, which is a
hard requirement for many operations.

3Assuming there are real worker nodes.

3



DCP, WT 2022/23, Institute of Distributed Systems, Ulm University Lukas Pietzschmann

4.3 Worker Node
While a driver node won’t execute the operations it
schedules4, a worker node’s sole purpose is to adhere to
the commands distributed by the driver. Each worker
node runs a unique instance of the Spark executor,
which is the process in which all operations are exe-
cuted. Each executor can run one or more tasks at the
same time in separate threads.

A task is the smallest assignable unit of work. The
results of the tasks are returned to the driver pro-
gram for aggregation. As each task will receive its own
closure, broadcast variables (see section 3.2) become
especially useful if an executor contains more than one
task.

5 EXECUTION OF AN
APPLICATION

This section will fit all the pieces mentioned in the last
pages together and will explain step by step how a spe-
cific application will be executed on an Apache Spark
cluster. As an example the previously constructed
Word-Count application will be used:

1 from operator import add
2 rdd = sc.textFile("some_text.txt")
3 rdd2 = rdd.flatMap(lambda l: l.split(" ")) \
4 .map(lambda w: (w, 1)) \
5 .reduceByKey(add)
6 result = rdd2.collect()

Listing 4: Word-Count

The first step Spark performs is generating the lin-
eage graph and logic plan (see figure 2). This logical
plan will then be transformed into a physical plan,
which plan removes any abstractions and describes ex-
actly which task will be run on which machine [4, P. 3].
However, the transformation from logical to physical
plan is not as simple as presented here. More details
are provided in Michael Armbrust’s paper Spark SQL:
Relational Data Processing in Spark. Especially section
4 and figure 3 detail this process.

Let’s imagine a cluster of one driver and two worker
nodes. For simplicity, we will also assume that rdd
will be subdivided into two partitions, one for each
worker. Spark will then – at least in theory – generate
eight tasks5 (as a reminder: Word-Count consists of

4Again assuming there are real worker nodes.
5In practice this number will definitely be lower because, as
stated previously, Spark heavily optimizes every step of the
execution.

four transformations). Those eight tasks will now get
their respective closure, which will only contain the
operation itself, as there’s no other local data necessary.
This sequence of tasks is then grouped so that each
group will end with a shuffle.

5.1 Stages and Shuffles
Stages and shuffles directly influence the data through-
put Spark can achieve by controlling how many tasks
can be executed in parallel.

A stage refers to a group of tasks that can be exe-
cuted in parallel. While tasks can overtake other tasks
within the same stage, stages, on the other hand, have
to be executed in order. A Stage can be terminated by
two operations: (1) actions and (2) shuffles.

Shuffles are the redistribution of data between stages.
They are a critical component of Spark’s execution
engine and are responsible for the reordering of data to
ensure proper partitioned RDDs for the following stage.
Shuffle operations happen – with some exceptions –
typically as a result of ByKey or explicit repartitioning
operations. As parallel execution has to stop in order
for a shuffle to happen, it should always be tried to
minimize the number of their occurrences.

Task1 Task3 Task5

Task2 Task4

Task6

Task7

Shuffle

Stage 1 Stage 2

Figure 4: Shuffle terminating parallel execution

Figure 4 shows how the shuffle operation stops the
parallel execution and prevents Task7 to slip into the
gap after Task4. Back to the execution of listing 4’s
Word-Count:

To determine the number of stages Spark will fit
our eight tasks into, we could look out for ByKey
operations. This naive approach leads to the following
stages:

(1) textFile, flatMap, map, reduceByKey
(2) collect

Both worker nodes will now go through stage one,
executing the stage’s tasks on their respective partition.
Meanwhile, the driver node will wait until both workers
have finished stage one and will then perform a shuffle.
After shuffling, stage two’s action is executed as the
last operation of the application. collect will make
rdd2’s content available in the driver’s address space.

6 EXTENDING SPARK
While the preceding sections focused on Spark’s core
mechanics and abstractions, there are also four popular
libraries extending Spark’s default functionality.

4



Lukas Pietzschmann Apache Spark – An Application of In-Memory Processing

6.1 Spark SQL
Spark SQL provides – as the name implies – a con-
venient way to interact with SQL databases. In his
paper Spark SQL: Relational Data Processing in Spark
Michael Armbrust summarized the core idea of Spark
SQL.

Spark SQL lets Spark programmers lever-
age the benefits of relational processing
(e.g., declarative queries and optimized stor-
age), and lets SQL users call complex ana-
lytics libraries in Spark (e.g., machine learn-
ing).

Spark SQL provides two new abstractions [5]:
(1) Dataset
(2) DataFrame

While DataFrames provide a flexible and dynamic way
to work with structured data, Datasets offer a more
efficient and type-safe alternative for working with
structured data in Spark [4, P. 1].

6.2 GraphX
GraphX provides a new graph abstraction for a di-
rected multigraph with properties attached to each ver-
tex and edge. In order to make working with this new
abstraction easier, the library also provides additional
functions targeted to calculations on graphs. Notable
additions are: subgraph, joinVertices, collectNeighbors
and groupEdges [5, GraphX].

6.3 MLlib
Just like GraphX, MLlib only provides new abstrac-
tions that sit on top of Spark’s code. Machine learning
tasks consist of mostly linear algebra and statistics,
so MLlib provides functions tailored to those parts of
math [5, MLlib: Main Guide].

6.4 Structured Streaming
Structured streaming uses the same concepts and
ideas already known from Spark’s core. In order to
achieve stream processing, the stream is subdivided
into smaller windows, which will then be processed
like any other RDD [5, Spark Streaming].

ACRONYMS
RDD resilient distributed dataset
DAG directed acyclic graph

REFERENCES
[1] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce:

Simplified data processing on large clusters. (2004).
[2] Nasim Ahmed, Andre LC Barczak, Teo Susnjak, and Mo-

hammed A Rashid. 2020. A comprehensive performance
analysis of Apache Hadoop and Apache Spark for large
scale data sets using HiBench. Journal of Big Data 7, 1
(2020), 1–18. DOI:http://dx.doi.org/https://doi.org/10.118
6/s40537-020-00388-5

[3] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin,
Scott Shenker, Ion Stoica, and others. 2010. Spark: Cluster
computing with working sets. HotCloud 10, 10-10 (2010),
95.

[4] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai,
Davies Liu, Joseph K Bradley, Xiangrui Meng, Tomer Kaf-
tan, Michael J Franklin, Ali Ghodsi, and others. 2015. Spark
sql: Relational data processing in spark. In Proceedings of
the 2015 ACM SIGMOD international conference on man-
agement of data. 1383–1394.

[5] Spark Team. 2023. Apache Spark Documentation. (2023).
https://spark.apache.org/docs/latest/index.html

[6] Imran Rashid. 2015. Spark Accumulators, What Are They
Good For? (2015). http://imranrashid.com/posts/Spark-
Accumulators/

5

http://dx.doi.org/https://doi.org/10.1186/s40537-020-00388-5
http://dx.doi.org/https://doi.org/10.1186/s40537-020-00388-5
https://spark.apache.org/docs/latest/index.html
http://imranrashid.com/posts/Spark-Accumulators/
http://imranrashid.com/posts/Spark-Accumulators/

	Abstract
	1 Introduction
	2 In-Memory Processing
	3 Data model
	3.1 resilient distributed datasets
	3.2 Shared Variables
	3.3 Fault tolerance
	3.4 Persistence

	4 Architecture
	4.1 Driver and Context
	4.2 Cluster Manager
	4.3 Worker Node

	5 Execution of an application
	5.1 Stages and Shuffles

	6 Extending Spark
	6.1 Spark SQL
	6.2 GraphX
	6.3 MLlib
	6.4 Structured Streaming

	References

